SatoshiChain
  • What is SatoshiChain?
    • 1.1 Phases
    • 1.2 Connect To SatoshiChain
    • 1.3 Solutions
    • 1.4 Characteristics
  • Main Features
    • 2.1 'Clique' Proof-of-Authority (PoA) Consensus
    • 2.2 EVM-compatible
    • 2.3 Decentralized Governance
    • 2.4 Cross-chain Compatibility
  • Background
    • 3.1 Cryptographic Hash Functions
    • 3.2 Digital Signatures
      • 3.2.1 Secp256k1 Curve
      • 3.2.2 ECDSA Signature Algorithm
    • 3.3 Ethereum Virtual Machine (EVM)
    • 3.4 Consensus Protocols
      • 3.4.1 Proof-of-Work (PoW) - Nakamoto Consensus
      • 3.4.2 Istanbul Byzantine Fault Tolerant (IBFT)
      • 3.4.3 IBFT Proof of Authority (PoA)
      • 3.4.4 IBFT Proof-of-Stake (PoS)
      • 3.4.5 RAFT
      • 3.4.6 'Clique' Proof-of-Authority (PoA)
      • 3.4.7 Comparison and Selection
  • Developers
    • 4.1 SatoshiChain Layering Architecture
    • 4.2 SatoshiChain Cross-Chain Protocol
    • 4.3 SatoshiChain Design
    • 4.4 Native Currency of SatoshiChain: The $SC Token
    • 4.5 SatoshiChain Configurations
  • VE Model for SatoshiChain
    • 5.1 Voting Power
    • 5.2 How to Use $veSC
  • Smart Contracts of SatoshiChain
    • 6.1 Validator Set Contract
    • 6.2 Slashing Contract
    • 6.3 Staking Contract
    • 6.4 Governance Contract
    • 6.5 Vault Contract
    • 6.6 Bridge Contract
  • SatoshiChain Staking
  • SatoshiX Decentralized Exchange (DEX)
  • Potential Applications
    • 9.1 NFT
    • 9.2 DeFi
    • 9.3 GameFi
  • Become a Validator Node Operator
Powered by GitBook
On this page
  1. Background
  2. 3.4 Consensus Protocols

3.4.1 Proof-of-Work (PoW) - Nakamoto Consensus

Proof-of-Work (PoW) is a decentralized consensus protocol that can be handled securely in a peer-to-peer network without requiring any trusted third party. It solve the the difficulty of the Byzantine general problem in an open network where miners can generate arbitrary identities (also called a Sybil attack) to compete for the next generated blocks by solving a random hash puzzle. In order to avoid a Sybil attack, PoW is used to force the miners to have and run predefined computational resources. Additionally, PoW protects the security of the blockchain from the longest chain attacks. Unfortunately, PoW requires a large amount of energy which keeps increasing as more miners join the network.

Previous3.4 Consensus ProtocolsNext3.4.2 Istanbul Byzantine Fault Tolerant (IBFT)

Last updated 2 years ago